有明海北東部漁場におけるタイラギの資源変動

松井 繁明
(有明海研究所)

Resources change of the Pen-shell (Atrina pectinata japonica)
in Northeast part fishery of Ariake sea

Shigeaki MATSUI
(Ariakekai Laboratory)

タイラギは有明海の重要な二枚貝資源であり、特に沖合漁場では有明海独自の潜水器による漁法が盛んである。
有明海産タイラギは他の二枚貝と同じく資源の変動が大きく、約6～8年周期で増減を繰り返している。
福岡県のタイラギ資源は、1973～’75年にかけて漁獲量が19～85tと極端に落ち込んだが、’76年には1,725tに回復し、’79年には2,913tと過去最大の漁獲量を記録した（図1）。しかし、その後は徐々に減少する傾向がみられ、’96～97年は1,000tを上回る漁獲をあげたものの、’98年は525tにとどまっている。特に’99年度は、潜水器漁業の対象となる沖合海域全体で大量漁獲が見られ、漁期に入っても漁獲対象となる資源はほとんどない状態であった。干拓域のタイラギ資源からの漁獲はあったものの、漁獲の中心となる潜水器による漁獲量が激減し、全体の水揚げは175tにとどまった。
こうした状況にかかわらず、過去のタイラギ調査は主として漁期前の資源量把握を目的に行われており、1年を通じての詳細な調査は行われていない。このため、資源減少状況の把握や漁獲原因の検討も不十分である。
本研究では、1年を通じて継続調査を行い、資源状況の季節変化と漁獲状況、水質、底質環境を把握し、漁場での大量漁獲要因の解明を目的とした。

方 法

1.資源状況調査

昨年度の調査で稚貝の発生が多量にみられた区域5点（Str.1～5）について、’00年6月から’01年3月に
かけて月1〜5回、アクアリングと潜水調査を行い、貝の生息状況と生息密度を調べた（図2）。
また、千瀬湖の漁場2点（Stn.6、7）で採択により同様の調査を行った。
タイラギの生息密度は、0.5m x 0.5mステンレス製枠を海底に設置し、この中の全サンプルを計数した。調査点1ヶ所について5回これを繰り返し平均値を求めた。タイラギはバッチ状に群れて形成することから、調査場所による生息密度のばらつきが大きい。このため生息密度の平均値を図るために、アクアリング調査では50mのロープを羅針に平行に設置し、これにそって目視によりタイラギの分布状況を観察して平均的な分布状況がみられる場所で採択を行った。同じく潜水調査では約50mを歩き平均的な密度状態の場所で採択を行った。
採択を行ったサンプルは、研究所に持ち帰り漁長、殻付重量、むき身重量、貝柱重量、貝柱歩留（貝柱重量/殻付重量）を測定した。
また、むき身にして見た生殖巣を観察し、成熟、産卵放精の進行状況を調べた。産卵放精個体の成熟個体数に占める割合を産卵放精率とした。

2. 環境調査

(1) 水質調査
資源状況調査と同じ地点（図2）で、潜水調査時に船上から水質測定装置クロテック（アレック電子製）を使い表層と底層（海底より約0.5m）の水質を測定した。測定項目は、水温、塩分、溶存酸素、クロロフィルで必要に応じて溶存酸素はウィンクレータ法で、塩分については研究所の塩分計（誘導起電式塩分計）で検定した。

(2) 底質調査
資源状況調査と同地点で（図2）、潜水調査時に採泥した。採泥は内径38mmアクリル管を使い海底に垂直に差し込んで表層から約10cmまでの泥を探泥した。サンプルを研究所に持ち帰り表層の全硫化物を検知管法により求め、同時に表層から5cmの底泥について中央粒径値（Mdₙ）をふるい法により求めた。

結果

1. 資源状況調査
タイラギ資源は99年度の資源減少により漁獲対象となる1才貝以上の貝は見かけられなかったが、99年級群については各地点とも20〜224個/m²と高い密度で生息がみられた。しかし、発生範囲は極めて狭く、有明海北東部漁場に限られていた。
'99年級群は7月初旬まで生息密度に変化はみられなかったが、7月初旬から8月初旬の間に急激に生息密度が減少した。最も生息密度が高かったStn.2では7月10日調査時には224個/m²あった生息密度が7月26日には158個/m²、8月1日には110個/m²、8月4日には867個/m²と急速に減少し8月11日には710個/m²と7月初旬に比べ約1/3まで生息密度が減少した（図3）。
潜水調査時の観察からタイラギは底泥で落ちた状況で観察しており、また貝の内部に内容物を残したものが多くみられた。
9月中旬（9月19日）〜10月中旬（10月20日）の調
タイラギの資源変動

しゅうでは内容物を残した殻死個体は減少した。しかし、11月初旬（11月6〜17日）の調査では再び内容物を残した殻死個体が増加した。漁期前の12月15日の調査では、調査開始時の7月10日からの生残率は0〜22.5%で、ほとんどの漁場で全体の9割以上の殻死が確認された。

生殖腺の観察から7月28日の調査では産卵個体は無かったものの、雄の13.8%の個体に放精がみられた。

その後産卵、放精した個体の割合は急激に増加し、8月25日の調査ではほとんどの全ての雄が、9月15日の調査では全ての個体で産卵、放精が認められた（図4）。

'99年12月に平均殻長102.0±12.0mmであった貝が殻死が始まる7月には126.9±14.0mmまで成長した。9月には新たに着底した'00年級群の発生（殻長41.2±14.3mm）がみられた（図5）。

'99年級群で生残した貝は漁期前の12月には平均殻長156.1±15.6mmと漁獲サイズ（15cm以上）に達したが、貝柱の黒ずみや腐れがみられ減価としての価値は低かった。

'99級群の貝柱歩留は、6月から11月中旬にかけて減少し、11月17日の調査で最低値3.8%であった。その後1月中旬まで増加する傾向がみられたが、2月の調査では再び減少した。干潟で採取したタイラギと'00年級群の貝柱歩留は、11月中旬に最も低く、その後1月中旬まで急激な増加傾向を示した（図6）。

2. 環境調査

（1）水質調査

1）水温

表層水温は8月中旬が最も高く、最高値は8月11日に30.3℃であった。底層水温は8月28日に最高値28.0℃を観測した。表層と底層の水温差は7月上旬で約2.3℃、8月11日の観測値では最高値4.4℃。8月下旬で2.3℃と2.0℃以上が続いたが、9月8日に1.1℃まで減少した。その後は底層と表層の温度差はほとんどなくなった（図7）。

図5 殻長組成の経月変化

図6 貝柱歩留の変化
図7 水温の変化

図9 酸素飽和度の変化

図8 塩分の変化

図10 クロロフィルの変化
2）塩分
表層の塩分は最高値8月16日31.5、最低値8月23日26.4で変動幅は5.1であった。底層は変動が少なく最高値8月16日31.5、最低値7月26日29.2で変動幅は2.3であった。表層と底層の塩分値の差は8月11日に3.5、8月23日に最大値5.3、9月8日に3.4でいずれも表層の塩分値の低下がみられた（図8）。

3）溶存酸素
表層の溶存酸素飽和度は変動が大きく、8月8日に最高値188.7％、8月16日に最低値64.0％が記録された。底層では小潮時に溶存酸素の低下がみられ、8月22日に最高値117.2％、8月11日に最低値39.0％が記録された（図9）。

4）クロロフィル
表層のクロロフィルは変動が大きく、夏季には8月9日に17.3μg/l、9月8日に16.2μg/lと高い値を示したが、9月中旬から低下し、9月19日に4.6μg/l～11月27日3.7μg/lと低い値が続いた。その後12月初旬から急激に増加し12月15日には最高値20.2μg/lを記録した。

底層のクロロフィルは全体的に低く夏季の最高値は8月8日に6.9μg/lであった。表層と同様9月中旬から低い値が続いたが、12月初旬に急増し12月15日に最高値23.0μg/lを記録した。図10

（1）底質
1）硫化物
硫化物は7月10日のStn.1で最高値0.24mg/drygを記録するもののその後全調査地点で0.2mg/drygを超え
る値はみられなかった（図11）。

2）中粒径値
毎月実施した調査で、中粒径値（Mdφ）はStn.1では2.3～4.1、Stn.2では1.5～3、Stn.3では1.9～2.3、Stn.4では1.0～4.0、Stn.5では1.3～2.8の間で変化がみられた。

考察

本年度の調査では、タイラギの‘99年級群が極めて狭い範囲に今までにないほどの密度で発生がみられた。

漁場内漁の減少は、南側南部の底質変化が原因と考えられ、高密度の発生は、1才以上のタイラギの減少により生息場所が無きO才群の着底が容易であったためと考えられる。このほかに、流れの変化等環境要因の変化も影響を与えていると考えられ今後検討する必要がある。

今回の調査で従来の漁期前資源量調査では把握できなかった夏季のタイラギ資源の減少が、大量謹死によるものであることが初めて明らかになった。11月初旬から漁期開始前にかけての資源減少も、過去に大牟田沖の一部漁場で報告があるものの、今回は漁場全般にわたる大規模なものであったことから、本年に特徴的な現象である。

本調査で謹死の開始時期に成熟産卵の時期が重なり、6月初旬から成熟のためと思われる骨柱断面の急激な減少が観察されることや、夏季に溶存酸素の低下がみられ水質環境が悪化することが明らかになった。このことから夏季の大量謹死は成熟産卵に伴う活力の低下期に漁場での環境悪化が重なったことによるものと考えられる。

特に酸素飽和度は、水温変化の生息に適する40％以下の値がみられるなど今回の大量謹死の重要な要因であると考えられる。

タイラギの酸素耐性については、山本らが酸素飽和度が40％までは約切片のはば速く変化が無いことから補充に影響がないと報告しているが、謹死との関連については知見が少ない。酸素水塊の発生と謹死の関係については、今後、室内試験などでさらに検討を加える必要がある。

酸素飽和度はいずれも水温躍層が形成される7月上旬から8月下旬に減少がみられ、特に潮汐流が弱まる小潮時に大きな減少がみられた。潮汐流の大きな南側では夏季の躍層時期にも上下方向の掻拌が十分に起こり飽和

図11 全硫化物の変化
明確な酸素飽和度の低下が観測された。これは、躍層強度が強く潮流流等の上下方向の摂拌が弱い時に底層でプランクトン等の有機物が分解することによるものと考えられる。今後は、貯水素水塊の発生メカニズム解明のために、底質調査や浮泥の分析、底質の酸素消費量の測定、潮流調査等を行う必要がある。

11月からの繁殖については、10月中旬からプランクトンの発生量が急増して少なかったことから（図12）夏季に殻弱した貝が摂取を行い活力を取り戻す時期に飼料となるプランクトンが不足していたため、速やかに活力が戻らなかったことが原因であると考えられる。

貝柱近付は一般に産卵期が来てもない夏季に減少し、産卵期後の10月から回復に向かう（図11）。しかし、今回の調査では、11月の中旬に大きな減少傾向を示している（図6）。この傾向は干潟の1才貝、沖合漁場の貝にもみられ、飼料環境の悪化が福岡県地先全般で見られたことが示唆される。プランクトン沈降量の変化やクロロフィルの変化からみても9月より12月にかけてプランクトンの発生が少なく、この時期の飼料環境の悪化を裏付けてている。

植物プランクトンの発生により飼料環境が12月に入りって好転すると、干潟域と0才貝については貝柱近付の回復が顕著であるが、沖合の1才貝については明確な回復がみられていない。沖合の1才貝の貝柱近付の変化をみると飼料環境が回復した後に近付が回復する群と回復がみられない群に分かれている（図13）。

図13 貝柱近付の分布変化

夏季の貯水素水塊発生など環境悪化の影響がこうした貝の回復の差になるのではないかと考えられる。さらに、こうした夏季の水質環境の悪化は6～8月の産卵期による産卵発生、幼生の浮遊着底時期にあたるためその後の貝の活力、生存に影響を与えている可能性がある。特に本年度は、タイラギの発生から着底時期にかけて、貯水素水塊発生等水質環境の悪化に続いて飼料環境の悪化が起こっている。このことから考えると00年群の貝が大きなダメージを受ける可能性が高い。99年群の殻弱状況から'00年夏季のタイラギ資源の減少は、従来の発生量の増減等による6～8月期の資源変動とは違い、特異なものであるといえる。このことから00年群についても、'01年夏季に大量殻死を起こす可能性が極めて高く、今後の有明海でのタイラギ資源の減少が強く懸念される。

要約

1）1年を通じての資源量調査から、今まで不明であった夏季の大量殻死による資源変動を把握した。
2）タイラギ資源は、1才貝以上はみられないものの調査開始当初は貝が200～400個体/m²の高い密度で発生していた。
3) タイラギの発生している漁場面積は狭く、大牟田沖に限られていた。
4) タイラギ資源は'80年7月から8月にかけて急激な生息密度の減少がみられ、その後徐々に減少する傾向が続いた。9月中旬から10月下旬にかけて一旦資源の減少がおさまったものの11月に入り再び観測が始まり、11月初旬の調査では各調査点で減少が観察された。
5) 生殖期の観察から本年度のタイラギの産卵期は7月下旬から9月中旬であると考えられた。
6) 溶存酸素の連続観測を行った結果、タイラギの主漁場であるStn.1で8月初期にプランクトンの大量発生によると思われる溶存酸素の減少（酸素飽和度約39%）が観測され、夏季の大量観測の原因の一つではないかと考えられた。
7) 夏季の大量観測は、成層度の低下に伴い活動の減少時に漁場での環境の変化（水温の上昇、酸素、塩分の低下）が起こることにより、高密度に生息するタイラギに観測が起こったと考えられた。
8) 11月初旬から起こった資源量の減少は、10月中旬からのプランクトン発生が例年に比較して低かったことから、夏季に衰えた貝殻摂取を執行含む活動を取り戻す時期に、貝殻となるプランクトンが不足していたため速やかに活動が回復しなかったのが原因であり、貝殻の黑ずみやヤッセも同じ原因であると推測された。

文 献

1) 山下康夫：有明海産タイラギに関する研究-1漁量変動の周期性について.佐賀水試研報,第7号,85-88(1980).
2) 有明海釣導におけるタイラギ生息分布調査.福岡県水産海洋技術センター事業報告,平成12年
3) 荒川清：硫酸物水質汚濁調査指針（日本水産資源保護協会編）.256-257(1980)
5) 秋本恒基ら：資源管理型漁業推進総合対策事業.福岡県水産海洋技術センター事業報告,平成6年度,205-240(1994).
6) 入江章ら：1991年度冬季にみられた有明海大牟田地におけるタイラギ観測の原因.福岡県水産海洋技術センター研究報告
9) 山本昌一ら：マサキ、クマサルポー、タイラギの飼育のほぼ1年間の水温の影響.水産増殖41巻4号435~438(1993-H5)
10) 三井所正英ら：有明海産タイラギに関する研究-1佐賀県有明水試験場報告,第7号,85-88(1980).
11) 山下康夫ら：タイラギの漁場形成条件・特に付着基質に関する研究.昭和56年度指定調査研究総合助成事業報告,1-29(1982)