岸の総合開発を計画し、オランダ人のファン・ドールンに命じて築港適地調査を行った。その結果を受けた大久保利道は、明治8年（1875）に最初の不格別な近代港、野幌築港の事業に着手し、初期工事は内港、第二期工事は外港の建設予定で進められた。しかし内港が完成して間もなく、台風により、破壊を受けることから、後のスロ長浜を急遽に成績させ、遂に宮古島を陸地に接続し、松島湾の富栄養化問題の原因となっている。

昭和に入ってからは、鳴瀬川、吉田川の改修事業、極く最近においては石巻工業港の建設などによる石巻湾の汀線の変化が急激に進み、石巻湾と松島湾とは閉鎖状態になって来たものである。この状況が進むにつれて、新木浦別でなく、外松島の景観「嶺間浜」も砂丘に変容することが心配されるものであり、石巻湾の汀線の状況を観察すると同時に、前述の歴史的背景に依って状況を人為的変化と捉え、その改善等を検討すべきであると考える。

2）閉鎖性湾における海水の交流・交換

湾内の海水の交流・交換については、前にも述べたとおり土木工学的見地から、水路の水深、幅員と干満の潮位差を利用することにより、海面部に至る全ての海水を交流する事ができないかと考えてきた。これに関しては、既に富山県水産試験場研究報告第9号（1978）により、「作瀬水路の設計と効果予測に関する一試案」として、渡辺競、福留平昭両氏により発表されており、数理解析と沿岸漁業構造改善事業による松島湾東部海域の開発、その後は海岸開発事業の大规模開発事業などで作業による改善事業がなされ、一定の成果をもっている。この開発の一環においての成果であるが、これらの工法によって漁全囲に到達する事は可能と考える。

したがって、今回の宮城県に進んでいる松島湾浄化対策事業は、内容的には各省庁間に亘るが、水産、漁港、港湾、海岸の海に係わる部門が一致して基本計画を進める事によって松島湾は蘇るものと思われる。

そこで強く要望する点は、各セクション毎に浄化計画を立てると、全体の基本計画に基づき事業計画を立案し、その計画の下に各市町の分野に実施計画を作成、予算化すべきものと考える。各部に発展する事業であり強力な組織体制の下に推進されるよう要望する。

3）湾内に流入する汚水の改善

湾内に流入する汚水については、湾岸の自治体である市町が積極的に改善策を推進すべき重大な行政である。下水道事業を実施するには多大な費用を要するが、理屈ぬきに進める決断である。

参考までに各自治体の下水道事業実施状況を示す以下の通りである。

仙石海岸下水道 仙石町、七ヶ浜町、利府町（除浜田）
北上川下流流域下水道 鳴瀬川（除宮戸地区）
松島 　　松島　　松島町大浜地区、幡各地区
合併浄化槽 鳴瀬町大浜地区、幡各地区

湾内に流入する汚水

<table>
<thead>
<tr>
<th>部門</th>
<th>普及率</th>
<th>将来人口対</th>
</tr>
</thead>
<tbody>
<tr>
<td>塩竃市</td>
<td>73.7%</td>
<td>98%</td>
</tr>
<tr>
<td>七ヶ浜町</td>
<td>80.0%</td>
<td>100%</td>
</tr>
<tr>
<td>利府町</td>
<td>67.9%</td>
<td>90%以上</td>
</tr>
<tr>
<td>松島町</td>
<td>15.6%</td>
<td>75%</td>
</tr>
<tr>
<td>鳴瀬町</td>
<td>0%</td>
<td></td>
</tr>
</tbody>
</table>

(2) 都市部および公共下水道、流域下水道
農漁村部・集落排水、合併浄化槽
敷地内下水道使用量
大きさ：55,328m³/日
平均：44,433m³/日

(4) 下水道予算比率
8.1%〜23.7%
投資への経費比率
46.6%〜70.0%
t前後の生産が安定して続いている。一方，1961年の秋以降はノリ養殖が経年的に発達し，昭和40年代（1965～）には全国総生産量の約5%を占めた。しかし，1979年10月に幼葉期のノリが同調的に集団脱落して以来，毎年10月に脱落現象が発生するために，採苗と初期育苗場の機能を残して，内海からはノリ生産が消滅した。この原因を巡り，再び水質汚染問題が浮上した。ここでは，水質の経年変化における問題点と，葉類脱落の発生時に観察された現象を紹介する。

1. 水質の経年変化と現状


表1（1）海域の栄養階級区分とその特徴（7-9月の成層期）

<table>
<thead>
<tr>
<th>特徴</th>
<th>腐水域</th>
<th>過栄養域</th>
<th>富栄養域</th>
<th>貧栄養域</th>
</tr>
</thead>
<tbody>
<tr>
<td>《水質》透明度（m）以下</td>
<td>1.5以下</td>
<td>3以下</td>
<td>3～10</td>
<td>10以上</td>
</tr>
<tr>
<td>COD（mg/L）以下</td>
<td>10以上</td>
<td>3～10</td>
<td>1～3</td>
<td>1以下</td>
</tr>
<tr>
<td>TIN（μgN/L）以下</td>
<td>100以上</td>
<td>10～100</td>
<td>2～10</td>
<td>2以下</td>
</tr>
</tbody>
</table>

表1（2）松島湾の8～9月の水質

<table>
<thead>
<tr>
<th>項目</th>
<th>区分</th>
<th>1964年*1</th>
<th>1991年*2</th>
</tr>
</thead>
<tbody>
<tr>
<td>透明度（m）</td>
<td>表層</td>
<td>1.6±0.3</td>
<td>1.5±0.8</td>
</tr>
<tr>
<td>COD（mg/L）</td>
<td>表層</td>
<td>3.9±4.2</td>
<td>0.9±0.3</td>
</tr>
<tr>
<td></td>
<td>下層</td>
<td>2.1±1.6</td>
<td>1.0±0.4</td>
</tr>
<tr>
<td>TIN（μgN/L）</td>
<td>表層</td>
<td>64.9±138.1</td>
<td>6.2±3.9</td>
</tr>
<tr>
<td></td>
<td>下層</td>
<td>64.6±63.3</td>
<td>3.7±3.3</td>
</tr>
<tr>
<td>溶存酸素（％）</td>
<td>表層</td>
<td>83.0±33.8</td>
<td>87.7±9.2</td>
</tr>
<tr>
<td></td>
<td>下層</td>
<td>78.5±32.7</td>
<td>75.0±13.0</td>
</tr>
</tbody>
</table>

*1 藻野ほか（1965）
*2 松島町（1992）；宮城水試（1992）

図1 TIN濃度の経年変化（表層水と下層水）

——— 塩釜港， — — — — 塩釜湾
—— — — 水道・湾中央部， — — — — 湾奥部
Sp：春季（4～6月）， Su：夏季（7～9月）
A：秋季（10～12月）， W：冬季（1～3月）

2. 底質の経年変化と現状

表2 底質における熱量減量(%)の経年変化

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>塩釜港湾*（1）</td>
<td>13.9±0.7</td>
<td>14.2±1.9</td>
<td>17.0±2.5</td>
<td>16.7±1.8</td>
<td>16.9±2.2</td>
<td>11.4±2.1</td>
</tr>
<tr>
<td>金島水道内湾部*（2）</td>
<td>12.3±0.3</td>
<td>14.5±1.3</td>
<td>15.1±2.0</td>
<td>15.7±1.8</td>
<td>14.3±1.3</td>
<td>12.3±0.8</td>
</tr>
<tr>
<td>湾中央部*（2）</td>
<td>12.3±1.8</td>
<td>13.9±1.8</td>
<td>18.7±4.5</td>
<td>16.7±1.8</td>
<td>13.6±1.5</td>
<td>14.2±1.6</td>
</tr>
<tr>
<td>金島水道岩崎浦</td>
<td>13.4±1.8</td>
<td>14.3±0.6</td>
<td>19.7±5.8</td>
<td>15.8±1.5</td>
<td>13.6±3.2</td>
<td>13.5±0.7</td>
</tr>
<tr>
<td>資料</td>
<td>奥田俊治（1953年） 菅野ほか（1965年） 浦辺ほか（1976年） 水産庁（1984年）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

＊作業事実実施年：（1）1975～1977年，（2）1970～1972年

54）末から急激に増し，40年代（1965～74）年を見るとピークに作業事実の後，経年的に減少した。
水産用水基準ではCOD 20mg／g・dry，TS 0.2mg／g・dryを汚染の基準となり，COD 10mg／g・dry以上を汚染泥としている。この基準により，最も汚染が進行した1968年と，1987年の調査結果を比較したのが図2である。約20年間に湾奥各浦の一部では有機汚染と還元化が進む進行したが，湾全体としては污染泥域が大幅に縮小し，正常泥域が作業水域を中心に広く存在された。

3. 現状の水質における問題点
水質や底質が改善された一方，滝内一円に濃密に分布し，瀬戸内海の5月の現場調査が1965年に1万t・dryあっ
たアマモが（渡辺ほか，1976年）昭和50年代（1975～）
にはなく衰退し，更に1979年以降はノリ塩田が消失して，
内海の環境はそれ以前の富栄養化とは別の局面を迎えた。
菅野ほか（1965年），宮城水試（1976年），松島町（1982年）
の調査資料により，1991年と1971～1972年のNH₃-N／N
O₃-N，1991年と1984年のTN／TPの比率を求めた結果
が表3である。NH₃-N／NO₃-Nは以前には大部分が1
以下であったが，最近は3～5の範囲にあって還元的現
状を示している。また，かつてのNP比7.6～15.5は，
自然の代謝循環生態系における值である8～20の範囲に
あったが，最近は2.0～3.5に低下している。1991年度の
両比率は流入下水の値に匹敵する。つまり湾場の衰退な
どで自浄機能を消失した海内の水質は，陸域からの負荷
を直接反映し，湾全体が下水の漏洩池化しつつあること
を示唆している。しかもこの水質が次の例のように，更
に悪化することがある。
洋上シンポジウム

表3 NP比およびNH₄⁻N/NO₃⁻-N

<table>
<thead>
<tr>
<th>調査期間</th>
<th>1964年6月～10月</th>
<th>1991年5月～92年3月</th>
</tr>
</thead>
<tbody>
<tr>
<td>TN/TP</td>
<td>11.56±3.95</td>
<td>2.73±0.75</td>
</tr>
<tr>
<td>資料</td>
<td>梯野ほか(1965)</td>
<td>松島町(1992)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>調査期間</th>
<th>1970年6月～71年6月</th>
<th>1991年5月～92年3月</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₄⁻-N/NO₃⁻-N</td>
<td>0.89±0.34*</td>
<td>3.79±0.86</td>
</tr>
<tr>
<td>資料</td>
<td>宮城水試(1978)</td>
<td>松島町(1992)</td>
</tr>
</tbody>
</table>

*塩釜港内の測定値は除外

4. 間欠的な水質の異常変化

陸地排水は本来、質・量ともに非定常であるが、海域で検出される濃度は希釈混合作用により比較的定常的である。しかし、排水の水質や流量が定常的なときに、海域で常態とかけ離れた高い濃度が測定されることがある。この事例を示すのが図3である。

これは宮城県による塩釜港の風向風速、潮位、海面下50cm等深水の観測資料のうち、1981年10月22日～24日の記録である。このときは低気圧が通過して48mmの雨が降り、その後濃厚な気圧配置となり、最大風速24m/s、平均風速9m/sの北西風が吹いた。高潮過程は全然やめを訪れたことで、潮位が30cm、平均波高20cmの著変動がみられた。一方、水質の記録では、風が変った後に変化が表れ、塩素量は5.1、水温は1.7℃、pHは0.3、DOは2.8mg/lそれぞれ下昇し、CODは18.6mg/l上昇した。この変化が18～34時間経過した後は元の状態に戻った。

葉体脱落との関係をみると、毎年10月に水質が間欠的に変化した記録を選別した。その一部が表2であるが、

図3 風向・風速、潮位、水温、塩素量、pH、DOおよびCODの時変化（1981年10月22～24日）

表4 連続観測記録にみられた水質の間欠的な異常変動

<table>
<thead>
<tr>
<th>年月日</th>
<th>最大風速 (m/s)</th>
<th>C_D 降下 (%)</th>
<th>pH 降下 (pH)</th>
<th>DO 降下 (mg/l)</th>
<th>COD 増加 (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>10.22</td>
<td>14.0</td>
<td>19</td>
<td>-5.1</td>
<td>(28.0)</td>
</tr>
<tr>
<td>1981</td>
<td>10.23</td>
<td>23.0</td>
<td>15.0</td>
<td>-1.7</td>
<td>(24.5)</td>
</tr>
<tr>
<td>1981</td>
<td>10.24</td>
<td>15.0</td>
<td>19</td>
<td>-0.3</td>
<td>(18.5)</td>
</tr>
<tr>
<td>1982</td>
<td>10.18</td>
<td>7.0</td>
<td>21</td>
<td>-6.1</td>
<td>(23.5)</td>
</tr>
<tr>
<td>1982</td>
<td>10.19</td>
<td>15.0</td>
<td>54</td>
<td>-1.8</td>
<td>(24.3)</td>
</tr>
<tr>
<td>1982</td>
<td>10.20</td>
<td>24.5</td>
<td></td>
<td>-0.4</td>
<td>(17.0)</td>
</tr>
<tr>
<td>1983</td>
<td>10.26</td>
<td>7.0</td>
<td>11</td>
<td>-3.7</td>
<td>(25.6)</td>
</tr>
<tr>
<td>1983</td>
<td>10.27</td>
<td>20.0</td>
<td>40</td>
<td>-1.0</td>
<td>(27.5)</td>
</tr>
</tbody>
</table>

潮位観測場所：塩釜港、港橋、塩釜港港務所
水質観測場所：塩釜港東港、表面下50cm 宮城県環境保健部

表層水質の一時的な変化は、毎年同じ条件で発生している。つまり、図3の塩素量下降は雨と風で低塩水が風下に堆積したため、他の水質変化は、吹送流に伴う補流により風上の流動が風下に輸送堆積したものである。

葉体は灰黑色の水が流れ去った後に脱落すると漁業者は主張する。1985年10月27日、強い北東風が吹いた後の海面に、数百m間隔で灰黒水が幅80～7mの帯状に分布していた。漁業者の指示で採集分析した結果、その物質は粒状物質であり、その構成成分はCaAl₂Si₂O₇、Fe₃O₆(Mg、FeAl)(Si、Al)₆O₁₈(OH)₄、KAl(Si、Al)₆O₁₈(OH、F)₆であった。これは海底土の構成物質である。

結論、強い風でLAMONUI様環流のような現象が発生した。海面に発散線が吹送線を並べて、発散部から特に上層で低塩水中の低塩度粒子が、吹送線沿いに組織的に分布したものである。底層水域の上昇を表現し、下層の上昇は ANALOGU様に佐福の一部とされる、高濃度の暴露線を伴う組織現象は、大潮時等流速の速いときに生じる（渡辺・佐藤、1972)。

春夏季の本海は海水交換の抑制と高水温により、底層水の汚染が進行する。これが浮上して塩分割したときに表層水は悪化する。渡辺(1987)は強風のあとにその後のスワリックでは有機物質、重金属類、TN、NH₄⁻-N、PO₄⁻-Pなどの濃度が周辺水域より高いことを確認している。

葉体脱落の表4に示す水質変化の後に発生し、表4記載以外の年でも、強風、大潮の後に認められる。結局、近似的な下水の特性を示すノリ生育層の水質で、底層水の

図3 風向・風速、潮位、水温、塩素量、pH、DOおよびCODの時変化（1981年10月22～24日）
6. 稚幼魚成育場としての松島湾の重要性

児玉 純 一（宮城県水産試験場）

1. 湾内に生息する魚類

松島湾に生息する魚種は、1938〜1943年の調査結果であるが、谷田ほか（1957）により64科113種が確認されている。しかし、その後までまった調査は行られておらず、また、湾内での漁獲物水揚げ記録は整理されたもののないため、魚類分布の時代による消長は明らかでない。最近の湾内漁業者の網出日報や聞き取り調査、あるいは当水産試験場の稚仔魚分布調査結果から、産業的には重要なものの、定住性あるいは半定住性の魚類ではマハゼ、マアナゴ、ウナギ、バリ、コニシロ、アイナメ、シラウオ、サヨリ、ガザミなどがあり、また、松島湾を再生産の場あるいは稚仔魚の成育場として利用している魚種ではニシン、マコガレイ、イシガレイ、メバール、スズキなどが挙げられる。前者の中でも近年最も重要なものとしてマハゼが挙げられる。漁業生産以外にも湾内でのハゼ釣りや秋の風物詩

宮城県水産試験場（1987） 昭和62年度松島湾底質調査

宮城県水産試験場（1992） 平成3年度松島湾水質調査

严谨に作調査、昭和55年度改訂版旧基礎調査報告書（仙台湾・松島湾）1・181

宮城県水産試験場（1997） 浅海漁場の生産力開発研究における海水の交換の問題・作調査による海水交換を評価する上の質問、沿岸海洋研究ノート、14（1・2合併号）、65-78.

吉田隆一（1973） 低次生産段階における生物生産の変化、水圈の栄養状態と水深土壌産、日本水産学会編、恒星社厚生閣、東京、92-103.