内湾および干潟における物質循環と生物生産
東京湾の漁場環境問題
佐々木克之

1．はじめに
一われわれは未来の世代にどのような東京湾を残すべきか

今回からしばらく東京湾の問題を考えてみたい。前回までに取り上げた三河湾の調査を終えたからで
すでに9年が経過している。その後は親潮の低次生産力や三陸沖の炭素循環の研究が主となり、沿岸の
問題については東京湾の問題をすっかり手がけてきたに過ぎない。しかし、東京湾の環境問題は三河湾
とはまた異なった面も持っている。すでにこのシリーズで東京湾の水温、塩分分布の特徴[2]、東京湾の
青潮[4]、負荷[6]を取り上げてきたが、まだ現在
進行形の研究であり、他の研究者の成果も取り入れ
て東京湾問題を考えていきたい。

私の問題意識は「われわれは未来の世代にどのような東京湾を残すべきか」ということである。本稿[1]で
地球環境問題のキーワードとなっているSD(Sustainable Development)について“未来の世代が自らの必要を充
足しようとする能力を損なわないようにしながら、
同時に現時の要求をも満足させるような開発”と
紹介した。東京湾についてあってはめて平たく言えば、
“未来の世代が東京湾の豊かな盡美を享受できるよう
に、現在のわれわれが東京湾の豊かな恩恵を享受す
る”ということになる。この述べると、“東京湾の豊か
恩恵というものが現在存在するのか”という質問が
必ず出される。私、現在の東京湾は豊かな状態に
はないが科学的に対処すれば豊かな東京湾を未来の
世代に残すことは可能であると考えている。世界で
有数の人口を周囲にかかえ、かなり開発の進んだ東
京湾を豊かな海として未来に残す事業はわれわれの
世代にとって重要なことであり、また可能の事業で
あると考えている。この問題に関連して「東京湾の環
境回復への提言」がシンポジウムのテーマとして取り
上げられ[1]、私も話題提供者の一人となった。このシ
ンポジウムのコンピーナは次のようにまとめている。

行政施策としての提言・・・①東京湾は環境とし
て一つの系とみなし、その保全のために一元的な管
理を行うこと。②流入負荷(COD, N, P)量の動向を
正確に把握するためにモニタリング体制を早急に実
現すること。③底層の酸欠と青潮を解消するために
現在の流入負荷量(N, P)を大幅に(50％あまりが望
ましい)削減すること(Pの削減がより有効と思われ
る)。④湾内の浄化機能を高めるため、埋立てを規制
し、干潟を造成し、直立護岸を改造すること。⑤東
京湾を回復させる対策として環境基準にCODのみ
でなく、当面DOを加えること。

調査研究としての提言・・・①中小河川を含む各
河川の流速率、②Nの大気からの負荷、③脱窒素、
④光合成の定着やMicro zooplanktonを含む動物ブ
ランクトンの現存量と役割等のプランクトン生態系
の特徴、⑤底生生物の生態。

この提言も参考にしながら、東京湾の歴史を振り
返り、物質循環や生態系のいくつかのプロセスにつ
いて検討して、最後に総合的に考察してみたい。今
回は、東京湾についての私の問題意識を具体的に述
べて、問題提起したい。

2．東京湾漁業の変遷
1) 明治時代の漁業生物

私の勤務している職場は中央水産研究所という名
称であるが、この名称は1899年以降のものであり、
それ以前は1949年以降東海区水産研究所という
名称であった。戦後の食糧難の時代には食料とし
て漁獲する魚の研究(資源研究)が主流であり、ある
程度漁獲できるようになると鮮度保持やかまどこへ
への加工などのが研究(利用加工研究)も重要となり、1970
年代に入ると公害問題が重要となってきた。当時の
東海区水研で公害問題を担当していたのは水質部と
いう所であったが、主に重金属や農薬研究が主体で、
富栄養化に伴う生態系の変化について研究する部署は
なかった。そこで、最初箸一研究者が中心になり公害
研究会を作り、いろいろと勉強会を行っていたが、
それだけでは不十分ということで東京湾の問題を集中的に取り上げ、日本科学者会議東京支部のシンポジウムとして東京湾問題を取り上げたこともあった。そのうちに勉強した成果を発表しようということになり、東海区水研の普及誌「さかな」に発表することとして企画編集委員会を作り、その成果が1978年に「東京湾を診断する」と題して印刷された2)。ここで紹介する明治時代の漁業生物は、この中で坪井守夫氏（現、フェリオセオニ海開発勤務）がまとめたものである。明治時代の東京湾の漁業生物を知る上で貴重な資料として東京都内湾漁業興亡史に出てくる東京湾漁業調査報告がある。これは明治33年と34年に農商務省水産局の発行した水産調査報告第8巻と第9巻と同一物である。明治33年には東京の人口が200万人ということで、この報告書は現在のような人為的影響をあまり受けない自然に近い海の実態を描いているといってもよい。

当時の東京湾の漁業は三つの性格の異なった漁場に区分することができる。当時の東京湾漁場図を資源保護協会発行のパンフレット「東京湾一大都市圏の漁場環境保全」から引用して示した（図1）。第一の漁場は最も漁獲量の多かった州の漁業である。海域は富津崎からはじまり木更津、三枚州、羽田州から本牧鼻に至る水深5mより浅い海域であった。現在ではこの海域は埋立ててほとんど失われている。第二の漁場は礁の沿岸で、本牧鼻から観音崎の岩礁のに多い機能であるが、この漁場も埋立ててほどんど失われてしまった。第三の漁場は州と礁を除いた東京湾中南部にある平場漁場である。本稿[1]に示した表1-1と1-2にはこの報告書に出てくる漁業生物を三つの漁場に分けて表にしたものである。これを見ると実に多くの漁業生物がいたことが分かる。坪井氏によれば、これらの漁業生物の分布は現在の瀬戸内海の備讃瀬戸で漁獲されるものと大差なく、当時の東京湾の漁業生物は太平洋沿岸における湿潤流域の内湾漁場の一般的特徴を持っていた。[1]には明治時代の漁業生物がその後に減少した要因である環
境変化についても言及しているので、興味ある方は参照していただきたい。

2）戦後の漁獲量の経年変化

東京大学の清水 誠氏は一貫して東京湾漁業に注目して研究を進めている。図2はその仕事の一つであり、東京湾問題を語る時必ず引用されるものであるが（この図は1950年ごとに更新される）、東京湾内湾における漁獲量の経年変化を示す。この図から見てとられるのは、①漁獲量は1950年後半から1960年前半の約12万トンから最近の約4万トンと1/3ほどに減少していること。この減少に大きく寄与しているのは、アサリがピーク時の約10万トンから現在の約2万トンに減少していること。②1960年頃は貝類（アサリなど）、ノリ（養殖）および海藻（アオサ、オゴノリなど）が総漁獲量にしめる割合が大きかったが、最近は海藻の占める割合が激減していること。この海藻の減少はアオサやオゴノリが肥料・飼料や食料として利用されなくなるなど需要の変化も影響していると考えられる。③その他の水産生物（エビ、タコ、カニなど）は1972年に最低漁獲量となりその後ある程度回復してきたこと。

これらの結果から、①アサリの減少は埋立てによる漁場の喪失によるものと考えられる。②その他の水産物の減少は貧酸素水域の形成など水質悪化のためと考えられる。この図で興味深いのは1972年に最悪になったのにその後ある程度回復したことである。この原因としては次に述べるように、陸上からの有機物（COD）負荷の規制により東京湾の貧酸素水域の形成がある程度改善されたことがあげられる。漁獲の結果だけではなく、図3に示す清水 誠氏の行った東京湾の河口部と湾奥部で試験底曳き調査の1977年以降の結果であるが、種類数が増加していることが示されている。しかし1980年代に入って横ばいとなっている。清水氏によれば、最近では、漁獲されるものがシャコに限られているなど種類数が少なくなってきた心配であるとのことである。このことは貧酸素水域の改善をするためにも漁業生物はある程度回復するが、どのような漁法が増加するのかという生態系の問題は複雑であるということを示している。

東京湾の漁業の変遷から見て取れる問題は、1）漁業生物の減少は埋立てや負荷量の増大など人為的環境悪化によるものである。環境悪化の原因である人為的要因を明らかにすることにより環境改善のための科学的処方箋作りは可能である。2）環境悪化の原因を取り除くことにより漁業生物を増加させることは可能である。環境悪化による漁業生物の減少と環境回復による漁業生物の増加の過程を解明することにより生態系回復の方策を検討することが重要である。

3）東京湾の水質の変遷

1）海域の溶存酸素および有機物

現在の環境行政では海域については、CODやBODを指標とした有機物を基準としている。海域に有機物が多ければこの有機物の分解に伴い酸素が消費されるとともに有酸素の水が形成され、生物が生育することができないという考えに基づいている。まず、酸素であるが、酸素または無酸素はすでに本稿②で述べたように夏期の

図2 東京内湾における漁獲量の経年変化

海洋と生物 99 (vol.17 no.4), 1995

2) 有機物の負荷

図4は東京湾に注ぐ隅田川のBOD濃度および溶存酸素(DO)の経年変化を示したものである。隅田川では昭和45年(1970年)以降BOD濃度が急激に減少して、これと逆比例して溶存酸素が増加していることが分かる。実際に1960年代後半には隅田川は硫化水素の臭いがして、当時東海区水研調査船 QS 広島に保留在していたが、船底に生物が付着せずドックの時に苦労しなかったという話を聞いています。図5は東京湾に流入する中でワーストソンの経験域のBOD濃度を示したものであるが、BODの減少する速度は昭和55年頃(1980年)にようやく落ち着いてきている。表1には東京湾に流入するCOD量のいくつかの調査による見積も示したが、1972年のCOD負荷量比1970年代後半には負荷量は約1/4に減少していることが分かる。したがってCOD規制により河川のCOD濃度が減少し、このため海域の底層の溶存酸素濃度が回復し、この酸素の回復により水産生物もある程度回復したと推論できる。しかし、図6に示した海域の1972年以降の海域のCODの経年変化では、1972年以降COD濃度はそれほど変化していない。

3) 窒素およびリンの負荷と海域の濃度

図7には窒素の発生負荷量と東京湾への流入負荷量の経年変化を示したものである。1950年頃から1970年頃まで急激に増加し、その後は緩やかに増加している。図8には東京湾に流入するいくつかの河川の窒素(T- N)濃度の経年変化を示したが、この図では1974年以降しか示されていないので負荷量が急激に増加した時のものはないが、河川の窒素濃度はあまり変化していない。図9には東京都内湾(多摩川河口から江戸川河口の間)の窒素濃度の経年変化を示したが、昭和50年(1975年)から昭和55年にまで増加してその後おっとま変化していない。図10は内湾の窒素の無機窒素濃度の経年変化を示したが、C 類型では昭和53年から57年にかけてアノミウム塩が増加していて、図9の窒素の増加は主にアノミウム塩の増加によるものと考えられる。図11は

図3 東京湾海域(川崎一袖ヶ浦以北)(上)と湾口部(川崎一袖ヶ浦以南)(下)での試験状況調査により採取された魚介類種類数経年変化(清水、1988)

図4 隅田川・両国橋のBOD・DO経年変化図

図5
いくつかの河川の全リン (T-P) の経年変化を示したものである。昭和56年 (1981年) 以降の結果しか示されていないが、明らかに減少傾向にある。図12は東京都内湾の全リンの経年変化を示したが、河川の減少傾向ほどどの減少は見られない。河川を通じて東京湾に流入した窒素やリンは植物プランクトンに吸収され有機物 (COD) となる。このことを一般に河川から流入した有機物と区別して内部生産と呼ぶが、内部生産が大きければ海域の COD は減少せず、したがって環境も回復しない。東京湾の COD が減少しない主な

図5 銀瀬川・内筏橋のBOD経年変化

表1 東京湾へのCOD、窒素、リンの流入負荷量

<table>
<thead>
<tr>
<th>年度</th>
<th>COD</th>
<th>N (t d⁻¹)</th>
<th>P (t d⁻¹)</th>
<th>報告者</th>
</tr>
</thead>
<tbody>
<tr>
<td>1972</td>
<td>1450</td>
<td>－</td>
<td>－</td>
<td>日本道路公団</td>
</tr>
<tr>
<td>1973</td>
<td>1120</td>
<td>300</td>
<td>22</td>
<td>一都三県公害防止協議会</td>
</tr>
<tr>
<td>1974</td>
<td>681</td>
<td>－</td>
<td>－</td>
<td>日本道路公団</td>
</tr>
<tr>
<td>1975</td>
<td>378</td>
<td>－</td>
<td>－</td>
<td>建設省</td>
</tr>
<tr>
<td>1976</td>
<td>255</td>
<td>－</td>
<td>22</td>
<td>千葉県、横浜市、川崎市</td>
</tr>
<tr>
<td>1978</td>
<td>221</td>
<td>－</td>
<td>－</td>
<td>日本道路公団</td>
</tr>
<tr>
<td>1980</td>
<td>440</td>
<td>299</td>
<td>28</td>
<td>日本道路公団</td>
</tr>
<tr>
<td>1980</td>
<td>373</td>
<td>－</td>
<td>－</td>
<td>高尾</td>
</tr>
<tr>
<td>1980</td>
<td>423</td>
<td>－</td>
<td>－</td>
<td>日本水産資源保護協会</td>
</tr>
<tr>
<td>1984</td>
<td>350</td>
<td>－</td>
<td>－</td>
<td>環境庁</td>
</tr>
</tbody>
</table>

図6 東京内湾のCODの経年変化

海洋と生物 99 (vol.17 no.4), 1995
図7 窒素発生負荷量と東京湾への流入負荷量の変遷

図8 東京湾流入河川の全窒素の経年変化

図9 東京都内湾における全窒素の経年変化
図10 東京内湾のC類型における無機態窒素の経年変化

図11 東京湾流入河川の全リンの経年変化

図12 東京都内湾における全リンの経年変化

海洋と生物 99 (vol.17 no.4), 1995

311
図13　COD (a), アンモニア態窒素 (b), 硝酸態窒素 (c), リン酸態リン (d) 濃度の経年変化
(■の a, b は千葉県沖合いのデータ, c, d は澱沢のデータ, ibratorはいずれも澱沢のデータ)

原因は東京湾に流入する窒素やリンが減少しないことにあると考えられている。図13は東京湾のCOD,
アンモニア態窒素, 硝酸態窒素およびリン酸態リンの経年変化を示したものである。
この図で注意していただきたいのは、前半の黒四角は澱沢中央部の結果（単位は左側）で、後半の黒丸は澱沢の結果であ
り、単位は右側に示されている。この図で明らかなことは、窒素（アンモニアおよび硝酸）は増加傾向に
あり、リンは減少傾向にあり、COD は横違いであることである。

東京湾の水質の変遷から見てとられる問題は、1）有機物（COD）の流入負荷量の減少は間違いなく東京湾
の環境を改善し、漁業生物にもよい影響を与えた。
図3に示したように1970年頃は隅田川の溶存酸素はゼロであり、東京湾名物のハゼも全く見られなかっ
たが、1975年頃からハゼが見られ出し、現在では秋になると堤防はハゼ釣りの人々で大にぎわいとなっている。
2）しかし、海域のCODは隅田川のCODほど減少せず、ほぼ横違いであり、その原因は窒素およびリンの流入負荷量がそれほど減少しない（リンの場合）かむしろ増加傾向（窒素の場合）にあり、内部生
産が減少しないためである。
3）植物プランクトンが成長し内部生産が増加する場合、窒素とリンをどのような比率で利用するのかという問題があり、窒素
が増加して、リンが減少する時に内部生産がどうなるのかは検討すべき課題である。

4. 東京湾のプランクトン生態系の特徴
図14, 15は広島大学の上氏が調査した結果を示したものである。図14は1989年の8月の東京湾の動物
プランクトン現存量とかいあし類の中央重量の結果であり、STATION 0 は波崩、6 が浦賀水道、12 が三浦半島、6 が浦賀水道、12 が三浦半島、7 が三浦半島を結ぶ線上の点である。図15は1985年の6月の大阪湾の結果であり、STATION 1 が波崩、6 と 7 の間が紀伊水道、11 が日ノ岬の沖である。現在量（BIOMASS）をみると大阪湾はおおまかに5 mg/m²であるのに対して大阪湾では約40 mg/m²であり约10倍も大阪湾が多い。また中央重量は東京湾では約0.1 μgなのでに対して大阪湾では約10 μgで約100倍の値である。
東京湾のプランクトンはなぜ小型で、現存量も少ないのかは明らかにすべき課題である。

今後、水質、プランクトン生態系および漁業生産のそれぞれの問題とこれらの関係について検討していきたい。

引用文献
1) 東京湾の水質研究への提案. 言語学会, 28: 121-173, 1991
2) 東京湾を診断する: 三県(東京都水産局水産業組合)集, No.21, 1-55, 1978
3) 東京湾: 水質環境を考える(日本海洋学会編), pp. 69-95, 1994
4) 郷内湖・内湊の水質測定結果(総括編): 東京都, pp. 90, 1974
5) 平成5年度公共用水域の水質測定結果(総括編): 東京都環境局, 472pp., 1993
6) 川島栄: 江戸川の都市・自然(総括編), pp. 123-137, 東京都水産局, 1993
7) 高田秀雄: 東京湾(小倉紀雄編), pp. 39-44, 恒星社厚生閣, 1993

(水産庁中央水産研究所・海洋生産部)

** Abstract:** Tokyo Bay was abundant in fishery ago. But the fishery environment of the Bay became worse in the 1960’s and worst in 1972. After that the environment has been restored a little by the reduction of the input of COD, but the restoration has not continued since the 1980’s because the input of nitrogen has been reduced. This phenomenon showed that fishery could be restored by a proper policy even in Tokyo Bay which has been most eutrophicated in the world. This paper describes the history of fishery and water quality of the Bay and introduces a problem about the future of the Bay.