中央水研ニュースNo.30(2002...平成14年11月発行)掲載

【研究情報】
まぐろ供給モデルの開発と適用事例
多田  稔

目次
はじめに
まぐろ供給のモデル化
インド洋メバチマグロの資源変動における非加盟国漁獲の影響
ミナミマグロに対する適用
今後の展望

はじめに
 水産物の需要動向に関しては,日本市場の分析が蓄積されるとともに,FAOやIFPRI(国際食料政策研究所)等の国際機関によって世界モデルの構築が進められようとしている。需要分析は供給分析と結合されて一層意味ある結論を導き出すことができる。
ところが,水産物の供給動向に関しては漁獲努力量や資源量の時系列データの入手が困難でありモデル化が遅れている。FAOは水産資源の約7割が過剰漁獲にあるとしているが,そこでは漁獲量をタイムトレンドの多項式によって曲線回帰する単純なものが用いられている。
そこで水産物供給のモデル化に着手することにした。まぐろ類の資源動向は,小型浮魚類にみられるほど極端な自然要因の影響を受けにくいため,水産物全般の供給動向のモデル化を考える第一歩として適当な対象であると考えられる。
まぐろ供給のモデル化
 一般に漁業生産のインプットとアウトプット(Q)の関係を示す生産関数はQ=f (資源量,漁獲努力量)である。インド洋メバチマグロの場合はIOTC(インド洋まぐろ委員会)によって資源量データが公表されている。そこで,漁獲量(Q)を従属変数として,漁獲努力量の代理変数としての前年における日本市場のメバチ価格をドル建てに換算したもの(P)と原油価格(Po)を用いて回帰するとlnQ=0.40lnS+1.07lnP-0.29lnPo+Co.  [1]が得られた(以下ではCo.は定数項である)。
 次に,資源量(S)に関しては,重量で測った資源量の大部分は数歳以上の魚齢であるため,余剰生産モデルを修正して適用するとSt=St-1+r (1-St-k/K)St-k-Qt-1       [2]となる。ここでrは内的増加率,Kは資源の飽和量である。この関係を過去に遡って繰り返すと,資源量は過去の漁獲量の関数となる。2式を直接推定するとSt=St-1+0.325St-4-3.40・10-7St-4-Qt-1   [3]となった。資源量を過去の漁獲量の累積値で回帰すると,過去3~7年間の累積量が最も高い統計的適合度を示した。また,どちらの回帰式も過去の資源量の動きに関して同程度に正確な再現性を示した。
 漁獲量決定の1式と資源量決定の2式を結合すると,まぐろ価格上昇→漁獲努力量増加→漁獲量増加→タイムラグをおいて資源量減少→漁獲量減少という循環的プロセスをシミュレートすることができる。
インド洋メバチマグロの資源変動における非加盟国漁獲の影響
 インド洋メバチマグロ漁業においてはIOTC非加盟国の漁獲量が増加傾向にあり,近年には約50%のシェアを占めている(図1)。
図2図3は漁獲規制の有無および為替レートの仮想値を変化させた場合の漁獲量と資源量の推定値である。漁獲規制1と漁獲規制2は双方ともIOTC非加盟国による漁獲が1990年以降完全に排除されたと想定しているが,規制2が加盟国の漁獲量を実績値に固定しているのに対し,規制1は加盟国に対する規制は無いものとしている。
 規制の厳しい規制2のケースにおいては,漁獲量が実績値の約10万トンから約1/2の5万トンに減少し,資源量は約40%増となる。これに対し,加盟国に対する規制の無い規制1のケースにおいては,非加盟国の規制による資源増加の一部が加盟国の漁獲によって相殺されるため,資源は一時的に回復するものの再度減少に転じるとの結果を示している。いずれにしても,為替レートの実績値から50%円安(約176円/$)という非現実的な仮想状況と比較しても良好な資源回復が達成される。反対に20%円高のケース(約94円/$)では乱獲が進むため資源が急激に減少し,タイムラグをおいて獲量も減少に転じるとの結果が示されている。
 以上のシミュレーション結果は,資源回復のためには直接的に漁獲を規制することが重要であり,地域漁業管理機関非加盟国のみならず,加盟国の漁獲規制も併用する方が一層効果的であることを示している。
ミナミマグロに対する適用
 ミナミマグロ漁業においてはCCSBT(ミナミマグロ保存委員会)加盟国である日豪NZの三国の間では国別にTACが設定されているが,この他にCCSBT非加盟国の漁獲がなされている。非加盟国による漁獲は増加する傾向にあり(図4),そのミナミマグロ資源に及ぼす影響を推定する第一ステップとして,非加盟国による漁獲量の関数の推定を試みた。
 ミナミマグロのケースにおいては,日豪間における推定資源量に関する合意が無く,インド洋メバチのように公表資源量のデータを使用できないという問題がある。そこで,過去の漁獲量を資源量の代理変数としてQ=f(X, P, Po)を推定し,次の結果を得た。
lnQ=-1.758lnX+1.823lnP-0.993lnPo+Co.[4]
 ここで,QはCCSBT非加盟国によるミナミマグロ漁獲量,Xは過去3~9年間のミナミマグロ累積漁獲量,Pは日本市場における3~4年前のメバチ価格のドル換算,Poは原油価格である。
 近年にはまぐろの資源変動においてもレジームシフトが見られるという報告がなされている。このため,[4]式にSOI(南方振動指数)を追加するとプラスの符号を示した。ただし,推定係数のt値は1.2であり,統計的にはそれほど有意ではない。
また,当ニュースNo.25で紹介した日本の近海延縄の漁獲対象をメバチマグロに限定したものにSOIを適用した結果,マイナスに有意な符号を得た。この計測結果は,エルニーニョが発生すると暖水プールが東方に移動し,中西部太平洋の一次生産量が増加してメバチマグロの資源に好影響が出ることを示している。
今後の展望
 ミナミマグロの例で示したように,資源量と漁獲努力量のデータを欠いていても漁獲量の動向を再現できる供給関数を計測しうる展望が得られた。
 したがって,太平洋,大西洋,インド洋の主要まぐろ類のうちTACが設定されていない部分の漁獲量の関数を計測する作業を重ね,需要モデルと結合することによって,TACが市場に及ぼす影響を推定できるようになる。さらに,毎年の漁獲量に関して例えばQt=Qt-1のような制約をモデルに課すことによって,持続的に実現可能な漁獲量を推定することも可能である。
(経営経済部 比較経済研究室長)

nrifs-info@ml.affrc.go.jp
back中央水研ニュース No.30目次へ
top中央水研ホームページへ